Archive for the ‘HIV’ Category

AIDS Vaccine 2008: Cape Town

26 November, 2008
I was a presenter and rapporteur at this, one of the biggest of this series I have been to – over 900 delegates – held in the Cape Town International Convention Centre (CTICC) in October 2008.  This represents the first time that the organisers, the Global HIV Vaccine Enterprise, have held one of these annual conferences outside of North America or Europe – and certainly the first time in such a high HIV prevalence area (~11%).
The Abstract Book of the conference is now online, courtesy of the journal AIDS & Human Retroviruses, which prompts my publishing the written version of my rapporteur’s report, on Vaccine Concepts and Design.  The oral version had a lot more pictures and Star Wars references in it, but this one is more serious.  A more condensed version will also appear as part of a combined rapporteur’s report in the journal Human Vaccines sometime soon.

 

 

AIDS Vaccine 2008, Cape Town – Vaccine Concepts and Design

Ed Rybicki, Institute of Infectious Disease and Molecular Medicine, University of Cape Town

The fallout cloud from the failed STEP and Phambili clinical trials of the Merck adenovirus 5-vectored vaccines cast a long shadow over the conference, and especially over the area of vaccine concepts and design.  Inevitably, there was debate over whether or not T-cell response-based vaccines should ever be tested on a large scale again; and there appeared to be an intense and renewed interest in broadly-neutralising antibodies, and how to elicit them.  It was understandable, then, that those of whose stock in trade is T-cell vaccines were a little apprehensive going into this meeting: however, there was much to excite and much to enthuse, and in particular, several lines of evidence suggesting that T-cell vaccines are not dead and should still be vigorously pursued.

The conference opening was memorable for a number of reasons: among these was the Sizophila Choir of HIV+ folk from Cape Town, who moved many to tears with their amazing harmonies and hymns to ARVs.  Another, very important reason was the presence of South Africa’s new Minister of Health, Barbara Hogan: for the first time in years in a major forum, a senior member of the SA Government affirmed that HIV causes AIDS, and that the search for a vaccine was of paramount importance to SA and the rest of the world.

Arthur C Clarke’s Third Law states that “When an elderly and distinguished scientist says something is possible, he is almost certainly correct”: it was a pleasure, therefore, to hear the certainly distinguished Stanley Plotkin (Sanofi Pasteur / Univ Penn., PA) close the evening with a calm and reasoned explanation of why he thinks vaccines against HIV are possible.  He noted that HIV is not the only vaccine to see major difficulties in its development – and cited measles and CMV as object examples.  He suggested that multivalent vaccine(s) and regular boosters may be necessary; that the immune response needs neutralising Ab and CD4+ and CD8+ cells, in blood and mucosa – and pointed out that these are feasible to produce for other vaccines, so why not for HIV?

The most important Keynote/Plenary talks from the point of view of T-cell vaccines were those by Julie McElrath (Fred Hutchinson Cancer Res Inst, Seattle, WA; Plenary Session 1) on immune responses in the STEP trial; Tony Fauci (NIAID/NIH; Special Keynote) on future strategy, and Bruce Walker (Mass Gen / Harvard U; Plenary 2) on correlates of protective T-cell immunity.  Julie McElrath’s analysis of the STEP data was sobering, and potentially depressing, but there was a positive message: she said that T-cell epitope recognition as a result of the Merck Ad5 vaccine was inadequate, so we needed to use different strategy – such as a protein vaccine, which should almost certainly be adjuvanted for increased immunogenicity.  Tony Fauci summed up current strategic thinking very well, with his analogy of a radio dial, with Discovery and Development at opposite sides: he said that the failure of all large-scale vaccine trials to date meant we should turn the dial back to Discovery, with more focus on innate immunity, animal models and adjuvants, before any more large-scale trials were done.  Bruce Walker’s message, after an exhaustive analysis of “elite controllers”, was that these people have weaker CD8+ T-cell responses to HIV antigens – but they are significantly more Gag-focussed, and that stronger Env responses are correlated with increased risk of progression to AIDS.  His most important comment was that the Merck vaccine / STEP trial result was a failure of product, not of the concept, and that we are not barking the wrong tree with T-cell vaccines.

A novel introduction at the Conference was Special Session 02, Innovations in AIDS Vaccine Discovery: this was chaired by Wayne Koff (IAVI, NY), and had the objective of highlighting novel strategies for vaccine development.  K Reed Clark (Nationwide Children’s Hospital, Columbus, OH) presented a case for “reverse immunisation”, or using a DNA construct to express a humanised neutralising mAb: he used rAAV1 DNA to express scFv-h-C2-C3 IgG2 constructs for sustained delivery of neutralising Ab in macaques.  Sterilising immunity was achieved following NAb gene transfer in the face of a pathogenic SIV challenge, and he achieved sustained (1 yr) circulating levels of 200-400 ug/ml.  As a possible downside, there was an idiotypic anti-NAb response in animals which became  infected.  Sanjay Phogat (IAVI, NY) spoke on the use of immune complexes as vaccines: he used neutralising and non-neutralising MAb complexed to gp120 with an adjuvant (AdjuplexLAP) to generate quick and durable neutralising antibody responses against the Env protein, with immune sera neutralising 6 out of the 10 clade B viruses tested – far better and at much higher titre than adjuvanted gp120 alone.  Clayton Beard (Carolina Vaccine Inst, UNC, NC) had as his goal the use of a chimaeric live alphavirus (VEE) to create a simple self-replicating entity that presents the major antigens of HIV in vivo until an appropriate immune response suppresses its growth, leaving the recipient immune to HIV.  His almost complete redesign of VEE resulted in a virus expressing SIV/HIV Env and a SIV Gag modified to bind the VEE genomic encapsidation  signal, which replicates to titres of ~106/5 ml culture in Ghost cells.  All in all, this session was a welcome addition to the programme, and very well received.

Session OA02 – T-Cell Vaccines and Animal Models – contained several interesting approaches to T-cell vaccines.  Brad Jones (Univ Toronto) opened with a description of how T-cells specific for LINE-1 (long interpersed nuclear element) retrotransposon proteins were effective at eliminating HIV-1 and HIV-2-infected cells: apparently APOBEC-3 family proteins inhibit LINE-1 transposition, and HIV Vif interference with APOBEC allows aberrant LINE-1 expression in HIV-infected cells, which leads to MHC presentation of the LINE-1 proteome, and CTL killing of the affected cells.  A LINE-1-specific T-cell clone recognised, and killed within 2 hours, cells infected with 42 HIV isolates (37 of them primary isolates) from all subtypes, and HIV-2 isolates.  He argued that LINE-1 proteins represented a novel, stable vaccine target as they lacked variability, and speculated that anti-LINE-1 responses could be a part of natural control of HIV, as their T-cell clone was derived from an elite controller.  David Garber (Emory Univ, GA) spoke on the optimisation of modified vaccinia virus Ankara (MVA) to reduce expression of irrelevant antigenic targets: his group had essentially reduced the vector to immediate-early expression only outside of cells used for propagation, as well as lessening its immune evasion capacity by targetted deletions.  Modified vectors with gag and env genes performed 3-5 fold better than MVA in macaques, and it was possible to tune responses for better CD8+ or multifunctional responses.  Tomáš Hanke (Univ Oxford) presented a “universal T-cell vaccine”, HIVconsv: this was a DNA vaccine encoding a spectrum of T-cell epitopes separated by junction regions, derived from the HIV-1 proteome, concentrating on Gag and Pol, with some Env and Vif epitopes.  The vaccine potentially had 270 of a documented 1100 possible HIV-1 CD8+ T-cell epitopes.  T-cells from HIV-infected subjects were stimulated by vaccine epitopes: 11 of 12 subjects reacted to 2 or more peptide pools (covering, indicating good coverage.  Macaque immunisation resulted in a strong, broad response as assessed by ELISpot assay.  His hope was that the vaccine would redirect responses compared to natural infection, so as to negate immunodominance of one or a few epitopes.

Symposium 03 – Next Generation Vaccine Vectors – was a highlight of the Conference, with a number of excellent presentations.  Dan Barouch (Beth Israel Deaconess Med Ctre, Harvard) gave a tour de force talk on what amounted to a rerun of the Merck Ad5 vaccine efficacy trial in macaques, with a gag-only heterologous Ad26/Ad5 or Ad35/Ad5 vaccination regime.  The Ad26/Ad5 combination was best, 2x the Ad35/Ad5 response, which was 2x the Ad5/Ad5 response.  The Ad26/Ad5 regime gave long-term (500 day) durable partial protection against challenge, with a 3x greater breadth of epitope responses than to Ad5/Ad5.  The 26/5 regime elicited a good memory Gag-specific response, and similar to what Bruce Walker had said for elite human controllers, there was a significant correlation of the height and breadth of the Gag–specific response, and reduction of viral load.  Dan repeated Walker’s earlier comment, with some significant evidential weight to his iteration: the STEP trial was a failure of product, not of concept.

Louis Picker (Oregon Health & Science Univ, OR) discussed how a kinetic mismatch between replication and development of T-cell clones at the site of infection could result in infection taking hold – and further, that live attenuated SIV vaccines elicited mainly effector memory (EM) cells, whereas prime-boost vaccine regimes elicited mainly central memory (CM) cells.  His group used rhesus CMV – known to elicit mainly EM-dominated responses, and which can infect and reinfect monkeys, which remain infected lifelong – to vector SIV rev, nef, tat and gag genes into macaques.  In contrast to the CM response of Ad5-vectored genes, these elicited EM responses, enriched in bowel and lung and other mucosa.  Very weak Ab responses with no NAb were seen.  Protection against infection was seen in macaques challenged by repeat low-dose intrarectal SIV, with control groups infected at a median of two doses, and vaccinees taking 8: replication of virus was eliminated or controlled very early in infection, apparently by a CD8+ T-cell independent mechanism.  His message was that the CMV vaccine and the EM cell response drastically cut down transmission.

Anna-Lise Williamson (IIDMM, Univ Cape Town) closed out the session with an account of the vaccine development efforts in Cape Town under the auspices of the SA AIDS Vaccine Initiative (SAAVI).  Her group has brought a DNA and an MVA-vectored heterologous prime-boost multigene HIV vaccine combination to the point of human trial after successful broad-spectrum immunogenicity trials in baboons; however, they are also developing M bovis Bacillus Calmette-Guerin (BCG) auxotrophs and the limited host range Lumpy skin disease capripoxvirus (see also P16-02) as vectors, with very promising baboon and macaque immunogenicity results with HIV genes.  Additionally, the group has gone a long way in developing Pr55Gag and chimaeric Gag virus-like budded particles (VLPs) as vaccines, with good evidence of significant T-cell response boosts by VLPs of DNA-or BCG-primed immunity in mice and baboons.

An important sub-theme at the Conference was DNA vaccines: there has been a lot of disparaging talk in recent years concerning their potential efficacy; however, in the post-STEP era, the usurping adenovirus vectors have lost some popularity, and it seems the original genetic vectors have a new lease on life. 

George Pavlakis (NCI, Frederick, MD) in talk OA05-01 gave a masterly account of how electroporation of optimised DNA vaccines hugely enhanced humoral and mucosal responses.  He made the point forcefully that DNA vaccines had the advantage that there was no immune response to the vector, and that their preparation was rapid, scalable and safe – and that “increased expression improves the DNA vaccine result”.  He noted that different forms of antigen affect the immune response that electroporation as a means of delivery increases both antigen expression and immunogenicity; that natural cytokines delivered as DNAs were effective molecular adjuvants (eg: IL-12, IL-15), and that heterologous combinations such as DNA+protein, or DNA+viral vectors could be very effective.  In macaque vaccination experiments using gag, pol, nef and vif genes in combination with chemokine fusions, the group was able to get very high (30 000 sfu/106 cells) Ifnγ ELISpot results, with ~0.3% of total circulating T-cells being Ag-specific, and high serum Ab response.  They got a balance of central memory and effector CD4+/CD8+ cells, which is a shift of the type of response (central memory CD4+) obtained with previous DNA vaccines.

David Weiner (Univ Pennsylvania, PA) spoke in S03 on a very similar theme – electroporation and molecular adjuvants – and reiterated that optimisation of DNA yielded excellent results.  He also added manufacture as an optimization parameter, noting that it was now possible to get ~15 mg/ml of plasmid DNA: this allowed much higher, less dispersed doses of DNA.  He also noted that electroporation (EP) changes the phenotype of the response.  They tested an SIV DNA vaccine with IL-12, IL-15 or RANTES DNA as adjuvants in macaques: challenge showed IL-12, RANTES gave viral loads 2 log less than IL-15 DNA adjuvanted or DNA vaccine alone.  Concentrated DNA was as good an immunogen as Ad5, and much better when used with IL-12 DNA: there was increased magnitude of individual responses and increased polyfunctionality.

Fiona Tanzer (IIDMM, Univ Cape Town) in OA02-02 gave an excellent example of how to improve a DNA vector.  She used elements from Porcine circovirus (PCV) to significantly enhance expression from and immunogenicity of an already good DNA vector, increasing HIV Ag-specific Ifnγ ELISpot scores by 3 – 5-fold in mice using only 172 bases from the capsid gene promoter of PCV inserted upstream of a HIV-1 polygene vaccine construct. 

Taken together, these talks give an indication that DNA vectors for T-cell and other vaccines are alive and kicking, and on the verge of another growth phase in their deployment.  Improvements in manufacturing, antigen expression levels and DNA delivery, and parallel advances in the use of co-expressed molecular adjuvants, all herald a new era in heterologous prime-boost studies for HIV and other vaccines.

Two posters – one an oral abstract – stood out for me as vaccine design highlights of the very rich and well-attended sessions.  Darrin Martin (IIDMM, Univ Cape Town) spoke briefly on P19-08: designing a recombination-proof HIV vaccine.  His bioinformatic approach identifies “cold spots” for recombination in the HIV-1 genome, and suggests targets for polyepitope-based vaccines.  Champiat et al. (P12-15) found that APOBEC is a T-cell target in HIV+ people: this further extends the range of invariant, HIV-induced potential T-cell vaccine targets. 

A few plant production-related HIV vaccine posters caught the eye, as my group has been involved in this for years, and it is a field with much promise but as yet, no few realised achievements.  Cherni et al. (P02-03) presented interesting data on gp41 MPR on Hepatitis B virus core particles made in plants; Andersson et al. (P12-08) demonstrated that transgenic Arabidopsis expressing p24 is orally immunogenic; Meyers et al. (P12-10) showed that plant-produced vaccine-relevant HIV Ag boosted DNA primed T-cell responses; Regnard et al. (P18-08) showed that plant production of HIV antigens could be significantly increased by used of a replicating geminivirus-derived vector.

 As for other posters, Welte and Walwyn (Univ Witwatersrand, SA) in P01-01 demonstrated elegant mathematical modelling of acute infection and vaccine design – and Guerbois et al. (LB-32) had truly excellent expression of budded Gag-ΔV1V2Env particles from a measles-vectored vaccine. 

All in all, then, the HIV vaccine enterprise is battered but still functional.

 

 

 

Nobel Virology 2008

7 October, 2008

It gives me great and unalloyed pleasure, as someone acquainted with one of the new Nobellists, and who has followed the science behind the awards ever since the beginning, to feature the three virologists who were jointly awarded the Nobel Prize in Medicine for 2008.

http://www.nytimes.com/2008/10/07/health/07nobel.html?hp

Discoverers of AIDS and Cancer Viruses Win Nobel Prize – NYTimes.com via kwout

To quote the NY Times article, written by Lawrence K Altman:

“The Nobel Prize in Medicine was awarded Monday to three European scientists who had discovered viruses behind two devastating illnesses, AIDS and cervical cancer.

Half of the award will be shared by two French virologists, Françoise Barré-Sinoussi, 61, and Luc A. Montagnier, 76, for discovering H.I.V., the virus that causes AIDS. Conspicuously omitted was Dr. Robert C. Gallo, an American virologist who vied with the French team in a long, often acrimonious dispute over credit for the discovery of H.I.V.

The other half of the $1.4 million award will go to a German physician-scientist, Dr. Harald zur Hausen, 72, for his discovery of H.P.V., or the human papilloma virus. Dr. zur Hausen of the German Cancer Research Center in Heidelberg “went against current dogma” by postulating that the virus caused cervical cancer, said the Karolinska Institute in Stockholm, which selects the medical winners of the prize, formally called the Nobel Prize in Physiology or Medicine.

His discovery led to the development of two vaccines against cervical cancer, the second most common cancer among women. An estimated 250,000 women die of cervical cancer each year, mostly in poor countries.”

The news is all the more welcome, because I am very familiar with the entire history.  The HIV pandemic has paralleled most of my career: I remember vividly my then Honours student – now a distinguished Professor in her own right – coming to me in 1984 to tell me that “…they have found the virus that causes acquired immune deficiency syndrome”.  Again, it was greatly of interest when Harald zur Hausen initiated the work that would lead to his award, as it was some of the first hard evidence that viruses were implicated in cancer – which suddenly made learning and teaching Virology a whole lot more sexy.  Especially in view of the mode of transmission of the viruses concerned…I like to think I may have put more people off casual sex by talking about viruses like herpes, HPV and HIV and what they can do to you, than any ten school guidance counsellors – but I digress.

The news is also welcome because I now work with both HPV and HIV: thus, reward for the people who invented our main field of endeavour is especially pleasing.

 But as ever, the Nobel awards are not without controversy.  Altman again:

“In 1983, Dr. Montagnier and Dr. Barré-Sinoussi, a member of his lab at the Pasteur Institute in Paris, published their report of a newly identified virus. The Karolinska Institute said that discovery led to blood tests to detect the infection and to anti-retroviral drugs that can prolong the lives of patients. The tests are now used to screen blood donations, making the blood supply safer for transfusions and blood products.

The viral discovery has also led to an understanding of the natural history of H.I.V. infection in people, which ultimately leads to AIDS and death unless treated.

H.I.V. is a member of the lentivirus family of viruses. The French scientists were cited for identifying a virus they called L.A.V. (now known as H.I.V.) in lymph nodes from early and late stages of the infection.

“Never before has science and medicine been so quick to discover, identify the origin and provide treatment for a new disease entity,” the Karolinska Institute said.

…Nobel Foundation rules limit the number of recipients of its medical prizes to a maximum of three each year, and omissions often create controversy.

The dispute between Dr. Gallo and the French team spanned years and sprawled from the lab into the highest levels of government. Dr. Gallo, 71, now at the University of Maryland in Baltimore, worked for many years at the National Cancer Institute in Bethesda, Md.

While in Bethesda in 1984, a year after the French team’s report, Dr. Gallo reported finding a virus that he called H.T.L.V.-3 and that was later shown to be nearly identical to the French L.A.V. After additional studies, Dr. Gallo said cultures in his laboratory had accidentally become contaminated with the French virus.

In 1986, Dr. Gallo and Dr. Montagnier shared a prestigious Lasker award, given in the United States; Dr. Montagnier was cited for discovering the virus and Dr. Gallo for determining that it caused AIDS.

In 1987, President Reagan and Prime Minister Jacques Chirac of France signed an agreement to share royalties and credit for the discovery.

But Maria Masucci, a member of the Nobel Assembly, told Reuters on Monday that “there was no doubt as to who made the fundamental discoveries.”

Dr. Gallo told The Associated Press on Monday that it was “a disappointment” not to have been honored with the French team. Later, Dr. Gallo issued a statement congratulating this year’s Nobel Prize winners and said he “was gratified to read Dr. Montagnier’s kind statement this morning expressing that I was equally deserving.” “

We’ve been waiting for this for a long time…and the result is interesting indeed, for many of us virologists.  Satisfying too….  I remember wondering at the time how the US team could blithely rename a virus that appeared very similar to one described a year earlier – and was even more fascinated to see how the story unfolded, with LAV becoming HTLV-III becoming HIV, as eventually sense and taxonomy overtook hubris.

The HPV award seems not to be controversial at all, and Professor zur Hausen is seen by everyone I have spoken to as a most worthy recipient.  Now, just to get that vaccine into people who need it….

HIV: roots run deeper than we knew

2 October, 2008

I have previously posted a number of articles on “molecular archaeology” of viruses, and how one can use extant sequences, archived tissue samples, or even blood of pandemic survivors to speculate on the origins of specific viruses, of viruses generally, or on the nature of old pandemic strains.Now HIV falls under the spotlight – again – as the 2nd October issue of Nature publishes three articles (one letter, a commentary on it and an independent commentary) on the origins of HIV-1 pandemic strains.I picked up on the first news – evidence for an older-than-previously-thought origin for HIV-1 – via our local paper this morning. Now this is VERY impressive; they usually keep science news for a slow day, and here they were telling us about a Nature paper on the day it was published! Accessing Nature brought up the Nature News commentary by Heidi Ledford, titled “Tissue sample suggests HIV has been infecting humans for a century”. Essentially, the commentary summarises the findings of Michael Worobey of the University of Arizona and his colleagues, who managed to amplify and sequence HIV-specific cDNA and DNA from a paraffin-embedded lymph node biopsy dating from 1960 from a woman in Léopoldville (now Kinshasa) in what is now the DR Congo. To quote Ledford:

“Their results showed that the most likely date for HIV’s emergence was about 1908, when Léopoldville was emerging as a centre for trade.”

Their findings added credibility to an earlier demonstration of HIV-1 in a 1959 sample, also from Kinshasa. What was interesting was that the sequences of the two viruses differed by 12%: this indicates that there was already significant divergence in the HIV-1 strains infecting people as early as 1960, pointing to a longer history of human infection than the previous estimate of the 1930s.Which led on to the Comments section, where one finds gems like this:

“This is one of the most stupid discovery I have ever heard. You will blame every single human plague on Africa, This is against all the Theories of evolutionary biology where The descents of the people that lived in the area might have developed a kind of resistance instead of being vulnerable to a new strain of the Virus.”

And:

“HIV is older than your great-grandparents, uh-huh! And I’ll bet that the US bio weapons effort is just ecstatic about this deflection. So now these members of science play to the bio-jackboot population controllers with this ‘revelation’ that those sex-crazed Africans of course just couldn’t stop themselves from pulling chimpanzees (I thought the original scientific theory was “green monkeys”) out of the trees for a quickie.”

I couldn’t take this, so I replied:

“It continues to amaze me, as a teacher of virology who tells big classes every year where HIV comes from, how every year some clique of students takes the African origin of HIV personally, as a direct affront. I echo the correspondent above: it is a virus, people. Viruses infect animals, they infect people, and sometimes spread from one to the other – and back, if you are a zoo animal and catch something from your handler. The AIDS pandemic is an accident of sociology, demography, access to high-speed, long-distance travel – and truck routes, and truck drivers. It happens that it originated in Africa. So did the human race – only a lot longer ago. Inevitably, as humans encroached on apes, things get passed across. And don’t spread, much, until…someone puts a road through the village.Why don’t people get more exercised about the origins of HTLV, another retrovirus that almost certainly jumped from monkeys to humans? Except that happened many thousands of years ago, and in south-east Asia, not Africa. And for the same reasons: people eat monkeys and great apes. For that matter, it is speculated that chimpanzees got SIV-CPZ from vervet (I HATE the term “green”) monkeys – and that it may have caused a population bottleneck, some 100 000 years ago. I note that chimpanzees are known to eat vervets, incidentally – so they caught the virus the same way we did.

Ah, well…. In any case, Paul Sharp of the University of Edinburgh – and phylogenetics guru – and the godmother of HIV/SIV diversity, Beatrice Hahn of the University of Alabama (from whom I got the chimp-vervet virus link), have an independent commentary in the same issue, wherein they speculate on “The prehistory of HIV-1”. They make this very interesting comment:

“If the epidemic grew roughly exponentially from only one or a few infected individuals around 1910 to the more than 55 million estimated to have been infected by 2007, there were probably only a few thousand HIV-infected individuals by 1960, all in central Africa. Given the diverse array of symptoms characteristic of AIDS, and the often-long asymptomatic period following infection, it is easy to imagine how the nascent epidemic went unrecognized.”

They also make the important point that the findings of the Worobey group were replicated – with similar but non-identical virus sequences being found – by another group working independently with the same tissue sample. This is important because it nails down the findings more firmly, as HIV sequences within an individual do differ, and:

“…the distance along the evolutionary tree from the group M ancestor to the ZR59 or DRC60 sequences is much shorter than those between the ancestor and modern strains, consistent with the earlier dates of isolation of ZR59 and DRC60, and confirming that these viruses are indeed old”.

a, The HIV-1 genome fragments that were successfully amplified from DRC60 (red) and are available for ZR59 (black). The numbering for the HIV-1 sequences corresponds to the HXB2 reference sequence (Supplementary Table 1). b, The A/A1 subtree from the unconstrained (in which a molecular clock is not enforced) BMCMC phylogenetic analysis. 1960.DRC60A is the University of Arizona consensus sequence, and 1960.DRC60N is the Northwestern University consensus sequence (that is, the sequences independently recovered in each of the two laboratories). The DRC60 sequences form a strongly supported clade with three modern sequences also sampled in the DRC.

Reproduced with permission from Nature Publishing Group (RightsLink License No 2041420001096) from:
Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960
Michael Worobey, Marlea Gemmel, Dirk E. Teuwen, Tamara Haselkorn, Kevin Kunstman, Michael Bunce, Jean-Jacques Muyembe, Jean-Marie M. Kabongo, Raphaël M. Kalengayi, Eric Van Marck, M. Thomas P. Gilbert & Steven M. Wolinsky
Nature 455, 661-664(2 October 2008) doi:10.1038/nature07390

So where did the virus infecting humans come from? The best guess, from the paper and the commentaries, is that it originated – as do the extant chimpanzee virus supposed to have descended from the common origin – in chimpanzees somewhere in southeast Cameroon.How did it get into people? Sharp and Hahn again:

“The simplest explanation for how SIV jumped to humans would be through exposure of humans to the blood of chimpanzees butchered locally for bushmeat.”

No sex, no weird practices…just eating our cousins.  And how and why did it get to Léopoldville? Trade…and in those days before widespread truck routes, that would have been via rivers – which, Sharp & Hahn point out, drain from southeast Cameroon into the Congo River, which flows past what is now Kinshasa. The Worobey paper has some interesting history in it, documenting times of founding and rates of growth of cities in equatorial west Africa: Léopoldville/Kinshasa was and probably still is by far the fastest-growing of these, and was the earliest founded (in 1885). All that was needed to seed a pandemic, then, was that people infected by a virus as a result of butchering chimpanzees, moved some 700 km down natural trade routes to an emergent trade centre – and settled, and passed it on.Then, of course, it is the same old story, told so well by Jared Diamond in “Guns, Germs and Steel“: increased human population density and breakdown in social structure leads to increase in rate of transmission and incidence / prevalence of a disease agent, until it reaches the threshold necessary to break out. It is interesting that it took so long to become noticed – but then, HIV is passed on considerably less efficiently than Hepatitis B virus, so the pace of the epidemic was necessarily slow.But very sure….

So there IS light at the end of the tunnel

1 April, 2008

After the shock of the second failure of an HIV-1 vaccine in Phase III trials recently – detailed to some extent here – we were surely due some relief.

And it is here: William Borkowsky and team have just published in AIDS and Human Retroviruses a paper which describes what amounts to successful “autologous immunisation” of a paediatric HIV-infected cohort by a series of progressively longer treatment interruptions, or drug holidays. 

The children, who ranged in age from 4 to 19, were all on HAART or highly active anti-retroviral drug therapy, and all had initially undetectable viral loads.  The subjects in the experimental arm of the trial were given a series of drug holidays of progressively increasing length over up to 17 cycles of treatment in some cases.  In the words of the authors:

“Increased HIV-specific immune responses and decreased HIV RNA were seen in those children who have had >10 cycles of antiretroviral discontinuations of increasing durations acting as autologous virus vaccinations. Other studies may have failed due to an insufficient number of exposures to HIV; most of the studies had fewer than six drug interruptions.”

This is a quite momentous finding: given that it is known that increased CD8+ T-cell responses to Gag proteins of HIV are correlated with decreased viral load in infected patients, this means that many times-repeated exposures of immunocompetent people to live virus seems to successfully elicit suitable immunity and reduce viral load, just as a vaccine could be wished to do.

But in all the vaccine trials, and in previous treatment interruption trials, no more than 4 vaccinations or 6 drug interruptions were performed – which may mean, given the lack of persistence of T-cell as compared to antibody responses, that simply too few treatments have been given in the past.

So is the solution to dose people considerably more often in prophylactic vaccine trials aimed at protecting against HIV infection? 

And possibly with subunit vaccines (such as our recent offering…B-) or killed whole-virus vaccines instead of “genetic vaccines” such as the DNA and virus-vectored HIV gene vaccines which have been so popular up to now?

We need to explore these possibilities – and to explore them soon.  There is a lot riding on the outcome….