We have had an in-house method for purifying Tobacco mosaic virus (TMV) and its various relatives ever since I got to Cape Town – and it was propagated by copying and re-copying of what was effectively an abstract for a talk given at our local Experimental Biology Group quarterly meeting in early 1970, published in the South African Medical Journal.
Marc van Regenmortel was Professor of Microbiology at the time, and had a long history of physicochemical and serological work on TMV and strains and mutants of TMV. He also had Barbara von Wechmar, later to become my PhD supervisor, working for him as a Scientific Officer – and together they came up with an ingeniously simple, easy, high-yielding method to purify TMV out of infected tobacco.
So why do we care now? Well, we’re trying to purify some derivatised TMV [details redacted while patent is sought], and Sue Dennis in my lab could only find techniques that involved extraction with chloroform, PEG/salt precipitation x 2, high-speed centrifugation – all of which sounded unnecessarily laborious, given I knew we had a better method.
Trouble is – I cleaned up my office a while back, and seeing as “we’ll never work with TMV again, will we??”, I’d thrown out all of the old practical manuals that included it.
So I go to the old papers I could find online, and they all referred to “von Wechmar and van Regenmortel, 1970”, with no methodological details. And of course, there was no record of this paper anywhere I could find, not even using [obscure Russian language site details redacted].
Then I chanced upon the very bare bones online archive of the SAMJ, married that up with the much snazzier-looking-but-devoid-of-desired pdfs official site to find issue numbers – and there we were! Via some fascinating side trips through a history of the plague in Cape Town, among other things, but finally, a PDF of the original EBG abstract.
In fact, I have a big section of our coldroom with myriad bottles of purified TMV, all at 5 mg/ml concentration or higher, still infectious, and up to 40 years old – all made by this technique.
So Sue is about to apply it right now, as she conveniently has a freshly mashed extract of N benthamiana ready waiting, and we have PEG and NaCl…we’ll give the charcoal/Celite a miss this time, because it can get a bit messy, but it is THE way to get pigments out of your virus preps – or even nanoparticles, @FrankBioNano & @Lomonossoff_Lab?
This is quite a big deal: there are very few cereal-infecting geminiviruses described from Eurasia, let alone symptomatic maize-infecting mastreviruses whose closest relatives come from Isle de la Reunion in the South Indian Ocean and Nigeria.
Mastreviruses are not seed-transmitted, so how did it get there? What is transmitting it? Is it possibly the elusive Bajra streak virus from India, that was described but never sequenced?
The authors say, in their conclusion:
“To date, other than MSV, MSRV is the only mastrevirus species that has ever been sampled from maize having maize streak disease symptoms. Interestingly, MSRV was also detected from wild grasses such as Setaria barbata and Rottboellia sp. in Nigeria, suggesting expanded host and geographical ranges for this virus [5]. This first report of MSRV isolates in China reveals that this virus is likely to possess a far greater diversity and distribution than has been appreciated. Because 10 of 22 samples from Yunnan Province, China, were infected with MSRV-YN, for an infection rate of 45.5 %, further work on epidemics of MSRV-YN in China is needed.”
Absolutely! Maize streak, whether caused by MSV or potentially by MRSV, can be a devastating disease – and if this is expanding out of endeminicty in grasses thanks to leafhopper population expansion, or climate change, things could get interesting int hat part of the world.