Posts Tagged ‘Megavirus’

Giant Zombie Killer Virus Rises From Its 30 000 Year Grave To Kill Us All! Or Not?

27 March, 2014

I am not a fan of “Science By Hype”, which I think I have made abundantly clear via Virology News and elsewhere. Thus, I pour scorn on the “We found a structure which will lead to an AIDS vaccine”, and “We found an antibody that will cure AIDS” type of articles, WHILE at the same time, appreciating the ACTUAL science behind the hype.

If there is any, of course.

Which is why I am torn, on the subject of a giant DNA virus purportedly found in 30 000 year-old Siberian permafrost. I am also a fan of zombies, hence the title. But seriously, now: here we are, with news media and semi- and fully-serious science mags all hailing the description in PNAS, no less, of “Pithovirus sibericum“.  A giant virus, wakened from a 30 000 year sleep in Siberian permafrost, by the kiss of an amoeba. OK, by infecting an amoeba, but you see where I’m going here. Pithovirus_sibericum__Researchers_Resurrect_30_000-Year-Old_Giant_Virus___Biology___Sci-News_com So here we are, with an article from Sci.news.com, trumpeting the discovery.  And there’s more:

“The findings have important implications in terms of public health risks related to the exploitation of mining and energy resources in circumpolar regions, which may arise as a result of global warming. “The re-emergence of viruses considered to be eradicated, such as smallpox, whose replication process is similar to Pithovirus, is no longer the domain of science fiction. The probability of this type of scenario needs to be estimated realistically.””

Yeah.  Rii-ii-ght.  Giant viruses are going to erupt from the permafrost and kill us all!  Really??

No.

Curtis Suttle, he of oceanic metaviromes fame, is quoted as saying the following, in Ed Yong’s Nature blog:

“…people already inhale thousands of viruses every day, and swallow billions whenever they swim in the sea. The idea that melting ice would release harmful viruses, and that those viruses would circulate extensively enough to affect human health, “stretches scientific rationality to the breaking point”, he says. “I would be much more concerned about the hundreds of millions of people who will be displaced by rising sea levels.””

Amen!  In other words, just because there ARE revivable viruses in permafrost – itself no new thing, BTW – does NOT mean they will harm humans. Think about this a moment: something locked away under the surface of the ground for 30 000+ years has to SURVIVE, first; second, it has to INFECT humans if it is to cause any harm. And what evidence do we have that anything found in Siberian permafrost can do that?

None.  None whatsoever.

Think again: how many humans, and how many mammals with virus that could infect humans, were there around on the Siberian plains 30 000 years ago?

Precious few.

And what likelihood is there that any viruses that COULD infect humans, got preserved? Vanishingly small. So what COULD get released from said permafrost, as it melts with inexorable global warming? Well, phages: lots and lots of phages.

Then some plant viruses, maybe: there have been previous reports of Tomato mosaic virus found in 1999 in glacial ice from Greenland, that was between 500 – 140 000 years old – that was also supposed to be a threat, as it escaped from melting icecaps.

To tomatoes, possibly.  If they grew in seawater.

But there’s more: here we have “New Deadly Flu Viruses Reemerge from Melting Ice“, from 2006.  Here we have

“An international team [that] found flu viruses in the ice of Siberian lakes, fact that warns about the possibility that global warming may release germs locked in glaciers for decades or even centuries.”

Yah. Right.  But at the same time, considerably more worthy of alarm than Pandoraviruses. Because what our worthy French colleagues did NOT do, in their report in PNAS, was see what ELSE was in their permafrost samples. Seriously: they trawled melting ice from a core sample with amoebae ONLY.

This is the equivalent of the 2nd year prac I used to do, when we made students screen water obtained from the environment with E coli to see if they could amplify coliphages out of it.  Why did they not do a metagenomic sequence trawl, after filtering out bits of mammoth crap and cockroaches and bits of twigs??  What did they MISS?  HBVs that infected Denisovans?  And are we SURE that the virus came from that long ago?  Has the ice really remained frozen all that time – and is there not the possibility that water didn’t percolate down through cracks and pores in the permafrost, carrying the virus with it, from a more clement environment on the surface??

OK, OK, so it’s a great find, and reasonably worthy of SOME hype.  BUT: it is NOT a harbinger of doom, because most viruses will NOT survive 30 000 years worth of entombment in ice, and in any case, would NOT infect humans even if they did. AND I hate the name: “Pithovirus sibericum“?  Really??  Viruses are not named like that!  Except by French folk who find these strange “amphora-shaped” viruses, apparently.

Goodbye, Mimi – we got Mega!

11 October, 2011

Through the unlikely medium of a local online version of a local daily paper, comes the following:

“A virus found in the sea off Chile is the biggest in the world, harbouring more than 1,000 genes, surprised scientists reported on Monday. The genome of Megavirus chilensis is 6.5 percent bigger than the DNA code of the previous virus record-holder, Mimivirus, isolated in 2003. “

The relevant article is from the group led by Jean-Michel Claverie, of the Institut de Microbiologie de la Méditerranée, in Marseilles, and appears in the October 10th online issue of PNAS.

From the abstract:

An electron micrograph of Megavirus: thanks to Jean-Michel Claverie

Here, we present Megavirus chilensis, a giant virus isolated off the coast of Chile, but capable of replicating in fresh water acanthamoeba. Its 1,259,197-bp genome is the largest viral genome fully sequenced so far. It encodes 1,120 putative proteins, of which 258 (23%) have no Mimivirus homologs. The 594 Megavirus/Mimivirus orthologs share an average of 50% of identical residues. Despite this divergence, Megavirus retained all of the

genomic features characteristic of Mimivirus, including its cellular-like genes. Moreover, Megavirus exhibits three additional aminoacyl-tRNA synthetase genes (IleRS, TrpRS, and AsnRS) adding strong support to the previous suggestion that the Mimivirus/Megavirus lineage evolved from an ancestral cellular genome by reductive evolution. The main differences in gene content between Mimivirus and Megavirus genomes are due to (i) lineages specific gains or losses of genes, (ii) lineage specific gene family expansion or deletion, and (iii) the insertion/migration of mobile elements (intron, intein).

I could argue with the choice of name as it does not conform to ICTV rules, as far as I can see – but then, neither did Mimivirus.  The important fact about the discovery – apart from the fact that it is a discovery, and therefore not amenable to hypothesising, which I rather like – is that it shows how very diverse these viruses are, and how long they must have been evolving.  For example, despite their morphological similarity, Mimi- and Megavirus genomes do not share nearly 25% of their ORFs – and sequence identities of  predicted homologous proteins are as low as 50%.

I have blogged earlier on Mimivirus structure and evolution – see “Mimivirus unveiled” – and it is nice to see that an important speculation from those earlier papers appears to be borne out here.  Namely, and quite important when considering both viral and cellular origins, is further evidence that very large viral genomes do not seem to have evolved by extensive horizontal gene transfer from cells, and in fact, the reverse may be true.  The authors state in their conclusion, in discussion of opposing views of the origin of these viruses:

“The potential origin of giant mimivirus-like genomes has been hotly debated, basically opposing two views. One is depicting Mimivirus as an extremely efficient gene “pickpocket,” explain- ing its large genome as the result of considerable HGTs from its host, bacteria, or other viruses. This scenario has been criticized in detail elsewhere [see paper for refs]. The opposite view claims that the level of HGT remained marginal (10%) and that most of the Mimivirus genes originated from an even more complex viral ancestor, itself eventually derived from an ancestral cellular genome.”

I have fond memories of an essay I won a school prize with, in about 1970, entitled “The Sea, and All that Therein Is”.  I should update it to “The Sea, and All the Viruses that Therein Are”…B-)