Posts Tagged ‘vaccine’

Virus-like particle and Nano-particle vaccines 2012: a conference report

30 January, 2013

Alta van Zyl, Virology Group, Molecular & Cell Biology Department, UCT

Introduction:

VLP flusm

Haemagglutinin-only Influenza A virus VLP. Courtesy of Russell Kightley Media

The new international conference on virus-like particles and nano-particles (VLPNPV) took place in Cannes, France at The Novotel Montfleury Hotel from the 28th to the 30th of November 2012.  The scope of the conference included virus-like particles (VLPs), the plant-based expression of VLP vaccines as well as expression and optimisation of VLPs.

Other topics included in the conference were:

  • VLP platform delivery systems
  • VLP vaccines
  • Nano-particles and nano-particulate vaccines

A multitude of topics were covered during the conference and many of the talks pertained to the immunogenicity of the VLPs and nano-particles and how they compared with the immunogenicity of DNA or subunit vaccines.

Talks were given by researchers from companies such as Medicago, Mucosis, Pevion Vaccines and Novavax. These talks gave a perspective on factors that need to be considered when commercialising VLP/nano-particle vaccines and to be GMP compliant.

Compelling presentations:

Developing plant-made virus-like particle vaccine products: An integrated platform from discovery to commercial scale

Marc-Andre D’Aoust, Nathalie Landry, Sonia Trepanier, Michele Dargis, Manon Couture and Louis-Philippe Vezina (Medicago, Quebec City, Quebec, Canada)

This talk was about a plant-made VLP against both pandemic and seasonal influenza- these vaccines are now in the clinical trial phase. What was especially interesting was the view from an industry point of view where expression had to be scaled up to produce large amounts of vaccine.  The Medicago platform can synthesize and clone approximately 100 gene constructs in two weeks, they can prepare 100 bacterial cultures per week and they have automated infiltration where 200 plant transformations can be performed per day and 150 VLP engineering approaches can be tested in one week.  For influenza Medicago tested 48 different infiltration approaches in one day for HA, NA, M1, M2 as well as P1 Gag and HGalT.  Medicago has been able to produce 10 million doses of HA VLPs in just one month.

See also: 

  • D’Aoust et al (2010) PBJ 8:  607-619 – The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza.
  • http://www.medicago.com

Development of RNA-free plant VLPs a source of novel therapeutics

George Lomonossoff (John Innes Centre, Norwich, UK)

This group made empty Cowpea Mosaic Virus (CPMV) VLPs that contained no RNA.  CPMV VLPs are versatile nanoparticles to which organic, inorganic and biological molecules can be bound.  The empty nature of the particle means that they can be used as carrier molecules for therapies; this could prove to be potentially useful as a cancer-treatment therapy.  The system is advantageous because of the lack of RNA which makes the particles non-infectious and no bio-containment is needed for the production of these VLPs.

Immunogenicity of VLPs: an immunological perspective

Martin Bachmann (University of Zurich, Zurich, Switzerland)

Background was given from immunological point of view about what makes VLPs so immunogenic. Three properties contribute to the immunological properties of VLPs (1) their size, (2) the repetitiveness of the particle capsid which provides multiple sites for antibody binding and (3) TLR ligands – the particle can be disassembled, the RNA removed and replaced with a TLR ligand to enhance immunogenicity. Also, the size of VLPs is optimal for drainage to the lymph nodes.

Immunogenicity optimization strategies for public-sector development of vaccines: the critical role of optimizing the antigen.

Martin Howell Friede (WHO, Geneva, Switzerland)

This talk was about looking at VLPs from the vaccine development view.  Monomeric antigens are not very immunogenic; therefore adjuvants were developed and came into use. For an efficient vaccine the antigen must be multimeric as antigen alone is insufficient to be immunogenic without adjuvant. Two factors have to be considered when producing a vaccine for FDA approval; (1) optimise the antigen before using an adjuvant, (2) use an adjuvant that has already been approved by the FDA. VLPs as vaccines provide the potential for immune-stimulation without the addition of adjuvant as the multimeric presentation of the antigen will enhance its immunogenicity.

Enhancing the immunogenicity of VLP vaccines

Richard W. Compans (Emory University, Atlanta, Georgia, USA)

This talk highlighted strategies which could be used to enhance the immunogenicity of VLPs.

  1. Look at alternate routes for vaccine delivery (intranasal, intramuscular, subcutaneous etc)
  2. Increase the breadth of immunity by enhancing responses to conserved antigens/epitopes
  3. Increase the amount of antigen incorporated into VLPs
  4. Incorporate the adjuvant into the VLPs as part of the structure

See also:

  • Ye et al (2011) PLoS One 6(5):  e14813
  • Wang et al (2008) J Virol

Innate and adaptive responses to plant-made VLP vaccines

Brian Ward (McGill University, Montreal, Quebec, Canada)

Brain Ward is also the medical officer at Medicago.  Humans rarely react to plant proteins/antigens. The plant glycans fucose/xylose at the N-terminal is an allergen and can cause anaphylaxis in humans. During trial experiments with influenza no individuals developed IgE responses to plant glycans, therefore plant produced vaccine is safe. The H1 VLP induced long lasting memory multifunctional T-cell responses in humans.

Impressions of the conference:

The conference was well organised with leaders in the field presenting their work. Interaction with the delegates aid in building crucial networking opportunities and work relationships. The international arena is packed with new technology development allowing us the opportunity to learn and improve our own understanding of various concepts.

This conference proved to be an invaluable learning experience and I thank the NRF for this opportunity and for providing me with the funding to attend this conference.  The exposure to conferences, especially those in the international arena, aid in the development of students and contribute to the quality of research that is conducted at UCT.

References:

1. VLPNPV website

(http://www.meetingsmanagement.co.uk/index.php?option=com_content&view=article&id=33&Itemid=83)

2.  Personal notes taken at the conference

Nonviral delivery of self-amplifying RNA vaccines – NOT!!

27 August, 2012

See on Scoop.itVirology and Bioinformatics from Virology.ca

“Despite more than two decades of research and development on nucleic acid vaccines, there is still no commercial product for human use. Taking advantage of the recent innovations in systemic delivery of short interfering RNA (siRNA) using lipid nanoparticles (LNPs), we developed a self-amplifying RNA vaccine. Here we show that nonviral delivery of a 9-kb self-amplifying RNA encapsulated within an LNP substantially increased immunogenicity compared with delivery of unformulated RNA. This unique vaccine technology was found to elicit broad, potent, and protective immune responses, that were comparable to a viral delivery technology, but without the inherent limitations of viral vectors. Given the many positive attributes of nucleic acid vaccines, our results suggest that a comprehensive evaluation of nonviral technologies to deliver self-amplifying RNA vaccines is warranted.”

 

I would re-ttitle this “Non-delivery of non-viral vectors…”.  Seriusly, folks, this is just the old Alphavax VEE vectors dressed up with with an in vitro synthesis step, and what amounts to a liposome delivery system.  Which means that it would be HIDEOUSLY expensive to produce, and is of no practical significance as a candidate vacine system whatsoever.

 

But I thank Alan Cann for pointing it out B-)

See on www.pnas.org

PLoS Pathogens: ADCC Develops Over Time during Persistent Infection with Live-Attenuated SIV and Is Associated with Complete Protection against SIVmac251 Challenge

24 August, 2012

See on Scoop.itVirology and Bioinformatics from Virology.ca

“Here we show that live-attenuated SIV induces progressive increases in ADCC over time, and that the development of these antibodies is dependent upon the persistent replication of the vaccine strain. In two different experiments, the animals immunized with live-attenuated SIV that remained uninfected after pathogenic SIV challenge had higher measures of ADCC than those that became infected. Our results suggest that antibodies contribute to protection by live-attenuated SIV, and that persistent stimulation of antibody responses may be essential for HIV-1 vaccines to induce high ADCC activity.”

 

Shit HOT results, in that they demonstrate that – as some have said repeated ly over years – that neutralising Ab are NOT necessarily the Holy Grail, and that ADCC and other mechanisms are also really important.  Good Stuff…B-)

See on www.plospathogens.org

Vaccination with Adenovirus Serotypes 35, 26, and 48 Elicits Higher Levels of Innate Cytokine Responses than Adenovirus Serotype 5 in Rhesus Monkeys

24 August, 2012

See on Scoop.itVirology and Bioinformatics from Virology.ca

“These data demonstrate that Ad35, Ad26, and Ad48, which utilize CD46 as their primary cellular receptor, induce significantly greater innate cytokine responses than Ad5, which uses the coxsackievirus and adenovirus receptor (CAR). These differences in innate triggering result in markedly different immunologic milieus for the subsequent generation of adaptive immune responses by these vaccine vectors.”

 

Important news for the vectored vaccine community in general, and for HIV vaccine in particular: Ad5 was the vehicle of choice; now it looks as though it shouldn’t be.

 

Adenovirus graphic courtesy of Russell Kightley Media

See on jvi.asm.org

Gag-Specific Cellular Immunity Determines In Vitro Viral Inhibition and In Vivo Virologic Control following Simian Immunodeficiency Virus Challenges of Vaccinated Rhesus Monkeys

24 August, 2012

See on Scoop.itVirology News

“We observed that CD8+ lymphocytes from 23 vaccinated rhesus monkeys inhibited replication of SIV in vitro. Moreover, the magnitude of inhibition prior to challenge was inversely correlated with set point SIV plasma viral loads after challenge. In addition, CD8 cell-mediated viral inhibition in vaccinated rhesus monkeys correlated significantly with Gag-specific, but not Pol- or Env-specific, CD4+ and CD8+ T lymphocyte responses. These findings demonstrate that in vitro viral inhibition following vaccination largely reflects Gag-specific cellular immune responses and correlates with in vivo virologic control following infection. These data suggest the importance of including Gag in an HIV-1 vaccine in which virologic control is desired.”

 

In other words: having Gag or a gag gene included in a vaccine against SIV given to monkeys was more important than having Pol or Env when it came to control of virus replication – although, as has been shown elsewhere, Env responses are important for protecting against acquisition.  This has important implications for human vaccines – although “monkeys aren’t men, and mice lie” – and in particular for the South African SAAVI vaccines, which elicit quite good Gag-specific cellular responses.

 

We wait in hope.  Graphic showing immune cells associated with HIV control courtesy of Russell Kightley Media.

See on jvi.asm.org

Science| Special Issue: H5N1 [exploring the “supervirus” controversy]

29 June, 2012

See on Scoop.itVirology News

“Introduction
The publication in this issue of these research papers on the airborne tranimssion [sic] of H5N1 marks the end of 8 months of controversy over whether some of the data, now freely accessible, should be withheld in the public interest.”

 

I think this is an important landmark in the so-called “dual use” debate: that is, the propensity of bodies in the US to attempt to regulate the release of information that MAY be usable in the making of bioweapons, or be usable in bioterror attacks.

 

Let us diffidently point out at this juncture that it is only really the superpowers who are definitively known in recent years to have had bioweapons programmes – apart from apartheid-era South Africa, that is! – and that damn nearly ANYTHING published on transmission or mechanisms of pathogenicity of human or animal pathogens (or even plant, for that matter) could be termed “dual use” if someone wanted to – and censored as a result.

 

It is also – as I tire of pointing out – possible to PROTECT against H5NX viruses using conventional vaccines right now – and the new universal flu vaccines coming on stream will almost certainly make this even more feasible.

 

The fact is that H5N1 flu is an ever-present threat to people living in Egypt, Indonesia, Cambodia, Viet Nam, Thailand and China – WITHOUT being weaponised.  It is no more than a notional threat to the US or Europe – and keeping information that could help in understanding how or how soon the virus could mutate to pandemicity out of people’s hands, is simply stupid. 

See on www.sciencemag.org

Five Mutations Make H5N1 Airborne | The Scientist

23 June, 2012

See on Scoop.itVirology News

“After more than 6 months of heated discussion, the second group that succeeded in making the H5N1 avian flu transmissible between ferrets, considered a good model for human transmission, has published its results. The paper, which came out today (June 21) in Science, demonstrates that only five mutations are needed to confer this aerosol transmissibility among mammals, and that re-assortment between different types of viruses—a technique used by the other group, which published its results last month in Nature—is not necessary.

Said Fouchier in a press conference “We both find … loss of glycosylation at the tip of the HA molecule, and this loss of glycosylation seems to increase the receptor binding specificity of the HA”. And though not all the mutations identified in the two studies match, “the mutations that are not identical still have a similar phenotypic trait,” he added.”

 

So this is what all the fuss was about?  This is what the NSABB did not want everyone to know?  How could they POSSIBLY think that the international virology and infectious disease community should be kept in the dark about this?  What this work has done has pointed the way along a path that will lead us to understand why and how influenza viruses change in order to more effectively get transmitted when they switch hosts – which is a good thing, surely.

And yet all they see is bioterrorism.

See on the-scientist.com

Avian flu viruses which are transmissible between humans could evolve in nature

23 June, 2012

See on Scoop.itVirology News

It might be possible for human-to-human airborne transmissible avian H5N1 influenza viruses to evolve in nature, new research has found.

The findings, from research led by Professor Derek Smith and Dr Colin Russell at the University of Cambridge, were published June 22 in the journal Science.
Currently, avian H5N1 influenza, also known as bird flu, can be transmitted from birds to humans, but not (or only very rarely) from human to human. However, two recent papers by Herfst, Fouchier and colleagues in Science and Imai, Kawaoka and colleagues in Nature reveal that potentially with as few as five mutations (amino acid substitutions), or four mutations plus reassortment, avian H5N1 can become airborne transmissible between mammals, and thus potentially among humans. However, until now, it was not known whether these mutations might evolve in nature.
The Cambridge researchers first analysed all of the surveillance data available on avian H5N1 influenza viruses from the last 15 years, focusing on birds and humans. They discovered that two of the five mutations seen in the experimental viruses (from the Fouchier and Kawaoka labs) had occurred in numerous existing avian flu strains. Additionally, they found that a number of the viruses had both of the mutations.
Colin Russell, Royal Society University Research Fellow at the University of Cambridge, said: “Viruses that have two of these mutations are already common in birds, meaning that there are viruses that might have to acquire only three additional mutations in a human to become airborne transmissible. The next key question is ‘is three a lot, or a little?’ “

 

So: was it a good idea to publish those two papers on mutating H5N1 viruses, or not?  Given that as I and many other more famous people pointed out, if you don’t know what makes the viruses mammal-to-mammal transmissible, you don’t know what to look for – and now we do, and look what they found.  This story will run, and run, and run – so we really, really should include an H5 consensus HA in seasonal flu vaccines!!

See on www.sciencedaily.com

Trade Secrets: Are Green Vaccines Appropriate for Africa? : Trade Secrets

21 June, 2012

See on Scoop.itVirology News

I have mentioned several times here, and elsewhere, that my lab works on expressing vaccine-relevant viral proteins in plants – and that I think this is a highly appropriate technology for the purpose.  Read more…

See on blogs.nature.com

Narcolepsy traced to specific [flu] vaccine batches

4 June, 2012

See on Scoop.itVirology News

“A new Swedish study shows that all Swedes who developed narcolepsy from the swine flu vaccine Pandemrix received the vaccine from 12 of the 35 batches, despite the claim by the responsible agency that no such connection exists.”

There are some slightly disturbing connections between the H1N1 2009 pdm virus and narcolepsy: the virus itself seems to have caused narcolepsy in some of those infected; now a vaccine is implicated – is this an innate property of certain of the virus proteins, possibly?

See on www.thelocal.se